Perspectiva inmersiva para la enseñanza de matemáticas: una revisión sistemática de la literatura

Autores/as

DOI:

https://doi.org/10.21703/rexe.v24i56.2932

Palabras clave:

Medios inmersivos, Enseñanza de matemáticas, Revisión sistemática de la literatura

Resumen

Actualmente, las tecnologías inmersivas ofrecen posibilidades de aplicación en todos los sectores de la sociedad. En la Educación, la inserción de estas tecnologías puede potenciar experiencias más interactivas, especialmente en disciplinas de carácter teórico y abstracto como las Matemáticas. Así, surge la pregunta: ¿de qué forma se está empleando la perspectiva inmersiva en la enseñanza de esta disciplina? Para responder a esta pregunta, se realizó una Revisión Sistemática de la Literatura (RSL), cuyo objetivo fue comprender cómo se ha utilizado la perspectiva inmersiva en la Enseñanza de las Matemáticas. Se seleccionaron artículos publicados entre 2014 y 2023 de las bases de datos Portal de Periódicos de CAPES, IEEE Xplore, SciELO, Web of Science, ERIC y Scopus. Tras la adopción de criterios de inclusión, exclusión, selección, extracción y calidad, el número de artículos se redujo de 258 a 60. Los resultados muestran que los estudios abordan diferentes contextos educativos, desde la Educación Primaria hasta la Superior. La mayoría indica que los medios inmersivos son más eficaces cuando se combinan con métodos tradicionales, solidificando conceptos a través de múltiples enfoques. Sin embargo, se mencionan desafíos como el alto costo de los equipos y la necesidad de formación docente. La RSL ofrece una comprensión más profunda sobre el uso de tecnologías inmersivas en la enseñanza de las Matemáticas y señala áreas que aún requieren investigación, con el fin de promover una adopción más eficaz de estas herramientas por parte de educadores e investigadores.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Lana Priscila Souza, Instituto Federal de Educação, Ciência e Tecnologia do Ceará

    Doutoranda em Ensino pela Rede Nordeste de Ensino (RENOEN), vinculada ao Instituto Federal do Ceará (IFCE), e bolsista do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Docente da Rede Estadual de Educação Básica do Ceará (SEDUC/CE). Licenciada em Matemática (2008) e especialista em Ensino de Matemática (2014) pela Universidade Estadual do Ceará (UECE); mestre pelo Programa de Mestrado Profissional em Matemática em Rede Nacional (PROFMAT, 2015) da Universidade Federal do Ceará (UFC); especialista em Tecnologias Educacionais (2023) pelo IFCE e em Docência para a Educação Profissional e Tecnológica (2025) pelo Instituto Federal do Espírito Santo (IFES). Desenvolve pesquisas nas áreas de Ensino de Matemática e Tecnologias Imersivas.

  • Sandro César S. Jucá, Instituto Federal de Educação, Ciência e Tecnologia do Ceará

    Possui Nivelamento Universitário (Studienkolleg) pela Technische Hochschule Köln (Alemanha); graduação em Tecnologia Mecatrônica e especialização em Docência para a Educação Profissional e Tecnológica pelo Instituto Federal do Ceará (IFCE); especialização em Automação Industrial e licenciatura em Física pela Universidade Estadual do Ceará (UECE); mestrado e doutorado em Engenharia Elétrica pela Universidade Federal do Ceará (UFC). Professor titular e pesquisador do IFCE, atua nos programas de pós-graduação em Educação Profissional e Tecnológica (ProfEPT), Energias Renováveis (PPGER) e Rede Nordeste de Ensino (RENOEN, doutorado). Desenvolve pesquisas nas áreas de Engenharia Elétrica, Mecatrônica, Energias Renováveis, Sistemas Embarcados, Internet das Coisas (IoT) e Robótica.

  • Auzuir R. de Alexandria, Instituto Federal de Educação, Ciência e Tecnologia do Ceará

    Cientista da Computação (1994) e Engenheiro Eletricista (1995) formado pela Universidade Federal da Paraíba (UFPB), com mestrado (2005) e doutorado (2011) em Engenharia de Teleinformática pela Universidade Federal do Ceará (UFC), estágio pós-doutoral (2025) no Istituto Italiano di Tecnologia (IIT). É professor do Instituto Federal do Ceará (IFCE), atuando nos programas de pós-graduação em Engenharia de Telecomunicações (PPGET), Energias Renováveis (PPGER) e Rede Nordeste de Ensino (RENOEN, doutorado). Pesquisador do LABMAX/IFSP. Desenvolve trabalhos interdisciplinares nas áreas de Visão Computacional, Robótica, Computação em Nuvem, C++, Inteligência Artificial, Engenharia Biomédica, Informática em Saúde e Ensino de Engenharia.

Referencias

Abdul Hanid, M. F., Mohamad Said, M. N. H., Yahaya, N., & Abdullah Z. (2022). Effects of augmented reality application integration with computational thinking in geometry topics. Educ Inf Technol, 27, 9485–9521. https://doi.org/10.1007/s10639-022-10994-w

Agrawal, S., Simon, A., Bech, S., Bærentsen, K., & Forchhammer, S. (2019). Definindo Imersão: Revisão de Literatura e Implicações para Pesquisa em Experiências Audiovisuais Imersivas. Revista da Sociedade de Engenharia de Áudio, 68(6), 404-417. https://doi.org/10.17743/jaes.2020.0039

Ahsan, M. G. K., Miftahudin, & Cahyono, A. N. (2020). Designing augmented reality-based mathematics mobile apps for outdoor mathematics learning. Journal of Physics: Conference Series. 1567 032004. https://doi.org/10.1088/1742-6596/1567/3/032004

Amir, M. F., Ariyanti, N., Anwar, N., Valentino, E., & Afifah, D. S. N. (2020). Augmented Reality Mobile Learning System: Study to Improve PSTs’ Understanding of Mathematical Development. International Journal of Interactive Mobile Technologies (iJIM), 14(09), pp. 239–247. https://doi.org/10.3991/ijim.v14i09.12909

Andrea, R., Lailiyah, S., Ramadiani, R., & Agus, F. (2019). "Magic Boosed" an elementary school geometry textbook with marker-based augmented reality. TELKOMNIKA Indonesian Journal of Electrical Engineering, 17, 1242-1249. https://doi.org/10.12928/TELKOMNIKA.v17i3.11559

Andriyani, Buliali, J. L., & Pramudya, Y. (2022). The effectiveness of the application of a learning model with augmented reality on deaf students’ geometry learning outcomes. AIP Conference Proceedings, 2479(1), 020003. https://doi.org/10.1063/5.0099940

Angraini, L. M., Yolanda, F., & Muhammad, I. (2023). Augmented Reality: The Improvement of Computational Thinking Based on Students' Initial Mathematical Ability. International Journal of Instruction, 16, 1033-1054. https://doi.org/10.29333/iji.2023.16355a

Bagossi, S., Swidan, O., & Arzarello, F. (2022). Timeline tool for analyzing the relationship between students, teachers, artifacts interactions, and meaning-making. Journal on Mathematics Education, 13(2), 357-382. https://doi.org/10.22342/jme.v13i2.pp357-382

Ban Hassan Majeed, & ALRikabi, H. T. (2022). Effect of Augmented Reality Technology on Spatial Intelligence among High School Students. International Journal of Emerging Technologies in Learning (iJET), 17(24), pp. 131–143. https://doi.org/10.3991/ijet.v17i24.35977

Barrios Soto, L. M., Maradey Coronell, J. A., & Delgado González, M. J. (2022). Realidad aumentada para el desarrollo del pensamiento geométrico variacional. Revista Científica UISRAEL, 9(3), 11–28. https://doi.org/10.35290/rcui.v9n3.2022.599

Betts, K., Reddy, P., Galoyan, T., Delaney, B., McEachron, D. L., Izzetoglu, K., & Shewokis, P. A. (2023). An examination of the effects of virtual reality training on spatial visualization and transfer of learning. Brain Sciences, 13(6), 890. https://doi.org/10.3390/brainsci13060890

Buchori, A., Prasetyowati, D., & Wijayanto, W. (2021). The effectiveness of using magic book Math in mathematics learning during the Covid-19 pandemic in senior high school. Journal of Physics: Conference Series, 1869(1), 012114. https://doi.org/10.1088/1742-6596/1869/1/012114

Buitrago-Pulido, R. D. (2015). Incidencia de la realidad aumentada sobre el estilo cognitivo: Caso para el estudio de las matemáticas. Educación y Educadores, 18(1), 27-41. https://www.redalyc.org/articulo.oa?id=83439194002

Cadavid, J. M., & Gómez, L. F. M. (2015). Uso de un entorno virtual de aprendizaje ludificado como estrategia didáctica en un curso de pre-cálculo: Estudio de caso en la Universidad Nacional de Colombia. RISTI – Revista Ibérica de Sistemas e Tecnologias de Informação, (16), 1-16. https://doi.org/10.17013/risti.16.1-16

Cahyono, A. N., Sukestiyarno, Y. L., Asikin, M., Miftahudin, M., Ahsan, M. G. K., & Ludwig, M. (2020). Learning Mathematical Modelling with Augmented Reality Mobile Math Trails Program: How Can It Work? Journal on Mathematics Education, 11(2), 185-196. https://doi.org/10.22342/jme.11.2.10729.181-192

Cai, S., Liu, E., Yang, Y., & Liang, J.-C. (2019). Tablet-based AR technology: Impacts on students’ conceptions and approaches to learning mathematics according to their self-efficacy. Br J Educ Technol, 50, 248-263. https://doi.org/10.1111/bjet.12718

Cascales-Martínez, A., Martínez-Segura, M.-J., Pérez-López, D., & Contero, M. (2017). Using an Augmented Reality Enhanced Tabletop System to Promote Learning of Mathematics: A Case Study with Students with Special Educational Needs. Eurasia Journal of Mathematics, Science and Technology Education, 13(2), 355-380. https://doi.org/10.12973/eurasia.2017.00621a

Crompton, H. (2015) Using Context-Aware Ubiquitous Learning to Support Students' Understanding of Geometry. Teaching & Learning Faculty Publications, 26. https://digitalcommons.odu.edu/teachinglearning_fac_pubs/26

del Cerro Velázquez, F., & Morales Méndez, G. (2021). Application in augmented reality for learning mathematical functions: A study for the development of spatial intelligence in secondary education students. Mathematics, 9(4), 369. https://doi.org/10.3390/math9040369

Demitriadou, E., Stavroulia, K.-E., & Lanitis, A. (2020). Comparative evaluation of virtual and augmented reality for teaching mathematics in primary education. Education and Information Technologies, 25(1), 381–401. https://doi.org/10.1007/s10639-019-09973-5

Dini Rahmawati, N., Buchori, A., & Hafidz Azizal Ghoffar, M. (2022). The Effectiveness of Using Virtual Reality-Based Mathematics Learning Media With an Ethnomathematical Approach. KnE Social Sciences, 7(14), 1005–1011. https://doi.org/10.18502/kss.v7i14.12050

Erturk, E.M., & Reynolds, G. (2020). The expanding role of immersive media in education. Proceedings of the 14th International Conference on e-Learning (EL 2020).

Fernandez, M. (2017). Augmented-Virtual Reality: How to Improve Education Systems. Higher Learning Research Communications, 7(1). https://doi.org/10.18870/hlrc.v7i1.373

Flores-Bascuñana, M., Diago, P. D., Villena-Taranilla, R., & Yáñez, D. F. (2020). On augmented reality for the learning of 3D-geometric contents: A preliminary exploratory study with 6th-grade primary students. Education Sciences, 10(1), 4. https://doi.org/10.3390/educsci10010004

Frisnoiry, S., Siregar, T. M., & Manurung, S. L. (2022). Mathematics Book Innovation Based on Digital Literature. Journal of Education, Health and Sport, 12(9), 288–296. https://doi.org/10.12775/JEHS.2022.12.09.033

Gadille, M., Corvasce, C., & Impedovo, M. (2023). Material and socio-cognitive effects of immersive virtual reality in a French secondary school: Conditions for innovation. Education Sciences, 13(3), 251. https://doi.org/10.3390/educsci13030251

George Reyes, C. E. (2020). Percepción de estudiantes de bachillerato sobre el uso de Metaverse en experiencias de aprendizaje de realidad aumentada en matemáticas. Pixel-Bit. Revista De Medios Y Educación, 58, 143–159. https://doi.org/10.12795/pixelbit.74367

Guerrero, G., Ayala, A., Mateu, J., Casades, L., & Alamán, X. (2016). Integrating virtual worlds with tangible user interfaces for teaching mathematics: A pilot study. Sensors, 16(11), 1775. https://doi.org/10.3390/s16111775

Hartatiana, Darhim, & Nurlaelah, E. (2017). Student’s Spatial Reasoning through Model Eliciting Activities with Cabri 3D. Journal of Physics: Conference Series. 895 012075. https://doi.org/10.1088/1742-6596/895/1/012075

Hendracipta, N., Rafianti, I., Pujiastuti, H., & Haryadi, R. (2021). The use of augmented reality to improve mathematics conceptual understanding of pre-service elementary education teachers. Journal of Physics: Conference Series, 1796(1), 012018. https://doi.org/10.1088/1742-6596/1796/1/012018

Hernández Moreno, L. A., López Solórzano, J. G., Tovar Morales, M. T., Vergara Villegas, O. O., & Cruz Sánchez, V. G. (2021). Effects of using mobile augmented reality for simple interest computation in a financial mathematics course. PeerJ Computer Science, 7, e618. https://doi.org/10.7717/peerj-cs.618

Hsu, Y.-C. (2020). Exploring the Learning Motivation and Effectiveness of Applying Virtual Reality to High School Mathematics. Universal Journal of Educational Research, 8(2), 438-444. https://doi.org/10.13189/ujer.2020.080214

Hsu, Y.-C. (2021). Exploring the Effectiveness of Two Types of Virtual Reality Headsets for Teaching High School Mathematics. Eurasia Journal of Mathematics, Science and Technology Education, 17(8), em1986. https://doi.org/10.29333/ejmste/10996

Jaelani, A. (2021). SketchUp-aided generative learning in solid geometry: Does it affect students’ spatial abilities? Journal of Physics: Conference Series, 1778(1), 012039. https://doi.org/10.1088/1742-6596/1778/1/012039

Jaelani, A., Kusumah, Y., & Turmudi, T. (2019). The design of SketchUp software-aided generative learning for learning geometry in senior high school. Journal of Physics: Conference Series, 1320(1), 012048. https://doi.org/10.1088/1742-6596/1320/1/012048

Kartika, Y., Wahyuni, R., Sinaga, B., & Rajagukguk, J. (2019). Improving math creative thinking ability by using Math Adventure educational game as an interactive media. Journal of Physics: Conference Series, 1179(1), 012078. https://doi.org/10.1088/1742-6596/1179/1/012078

Khairunnisak, C., Elizar, E., Johar, R., & Utami, T. P. (2018). Teachers’ use of learning resources in spatial learning. Journal of Physics: Conference Series. 1088 012035. https://doi.org/10.1088/1742-6596/1088/1/012035

Kitchenham, B. (2004). Procedures for performing systematic reviews (Vol. 33, No. 2004, pp. 1-26). Keele University.

Lainufar, Mailizar, & Johar, R. (2020). A need analysis for the development of augmented reality based-geometry teaching instruments in junior high schools. Journal of Physics: Conference Series. 1460 012034. https://doi.org/10.1088/1742-6596/1460/1/012034

Lasica, I.-E., Meletiou-Mavrotheris, M., & Katzis, K. (2020). Augmented reality in lower secondary education: A teacher professional development program in Cyprus and Greece. Education Sciences, 10(4), 121. https://doi.org/10.3390/educsci10040121

Lazo-Amado, M., Cueva-Ruiz, L., & Andrade-Arenas, L. (2022). Prototyping a mobile application for children with dyscalculia in primary education using augmented reality. International Journal of Advanced Computer Science and Applications (IJACSA), 13(10). http://dx.doi.org/10.14569/IJACSA.2022.0131085

MacCallum, K. (2022). The integration of extended reality for student-developed games to support cross-curricular learning. Frontiers in Virtual Reality, 3, 888689. https://doi.org/10.3389/frvir.2022.888689

Moral-Sánchez, S. N., Sánchez-Compaña, M. T., & Romero, I. (2022). Geometry with a STEM and gamification approach: A didactic experience in secondary education. Mathematics, 10(18), 3252. https://doi.org/10.3390/math10183252

Orcos, L., Jordán, C., & Magreñán, A. (2019). 3D visualization through the hologram for the learning of area and volume concepts. Mathematics, 7(3), 247. https://doi.org/10.3390/math7030247

Poçan, S., Altay, B., & Yaşaroğlu, C. (2023). The Effects of Mobile Technology on Learning Performance and Motivation in Mathematics Education. Educ Inf Technol, 28, 683–712. https://doi.org/10.1007/s10639-022-11166-6

Pramuditya, S. A., Subali Noto, M., & Azzumar, F. (2022). Characteristics of students' mathematical problem solving abilities in open-ended-based virtual reality game learning. Infinity Journal, 11(2), 255-272. https://doi.org/10.22460/infinity.v11i2.p255-272

Pujiastuti, H., & Haryadi, R. (2023a). Enhancing mathematical literacy ability through guided inquiry learning with augmented reality. Journal of Education and E-Learning Research, 10(1), 43–50. https://doi.org/10.20448/jeelr.v10i1.4338

Pujiastuti, H, & Haryadi, R. (2023b). Hybrid learning impact with augmented reality to improve higher order thinking skills of students. International Journal of Advanced and Applied Sciences, 10(12), 7-18. https://doi.org/10.21833/ijaas.2023.12.002

Qomario, Q., Tohir, A., & Prastyo, C. (2022). Math poster with augmented reality to increase learning outcome of high school students. International Journal of Trends in Mathematics Education Research, 5(1), 69-73. https://doi.org/10.33122/ijtmer.v5i1.106

Richardo, R., Wijaya, A., Rochmadi, T., Abdullah, A. A., Nurkhamid, Astuti, A. W., & Hidayah, K. N. (2023). Ethnomathematics augmented reality: Android-based learning multimedia to improve creative thinking skills on geometry. International Journal of Information and Education Technology, 13(4), 731-737. https://doi.org/10.18178/ijiet.2023.13.4.1860

Rondina, J., & Roble, D. (2019). Game-based design mathematics activities and students’ learning gains. The Turkish Online Journal of Design Art and Communication, 9, 1-7. https://doi.org/10.7456/10901100/001

Sandoval-Henríquez, F.J., Sáez-Delgado, F. & Badilla-Quintana, M.G. Systematic review on the integration of immersive technologies to improve learning in primary education. J. Comput. Educ. (2024). https://doi.org/10.1007/s40692-024-00318-x

Saundarajan, K., Osman, S., Kumar, J. A., Daud, M. F., Abu, M. S., & Pairan, M. R. (2020). Learning Algebra using Augmented Reality: A Preliminary Investigation on the Application of Photomath for Lower Secondary Education. International Journal of Emerging Technologies in Learning (iJET), 15(16), 123–133. https://doi.org/10.3991/ijet.v15i16.10540

Schutera, S., Schnierle, M., Wu, M., Pertzel T., Seybold J., Bauer, P., Teutscher, D., Raedle, M., Heß-Mohr, N., Röck, S., & Krause, M. J. (2021). On the potential of augmented reality for mathematics teaching with the application cleARmaths. Education Sciences, 11(8), 368. https://doi.org/10.3390/educsci11080368

Silva-Díaz, F., Carrillo-Rosúa, J., & Fernández-Plaza, J. (2021). Uso de tecnologías inmersivas y su impacto en las actitudes científico-matemáticas del estudiantado de educación secundaria obligatoria en un contexto en riesgo de exclusión social. Educar, 57(1), 119-138. https://doi.org/10.5565/rev/educar.1136

Siregar, T. M., Ritonga, A., Darma, J., & Dongoran, F. R. (2022). The Development of Digital Books Aided Augmented Reality (AR) to Improve Self Efficacy in Favor of Distance Learning. Journal of Education, Health and Sport, 12(9), 61–67. https://doi.org/10.12775/JEHS.2022.12.09.008

Sudirman, Kusumah, Y. S., & Martadiputra, B. A. P. (2022). Investigating the Potential of Integrating Augmented Reality into the 6E Instructional 3D Geometry Model in Fostering Students’ 3D Geometric Thinking Processes. International Journal of Interactive Mobile Technologies (iJIM), 16(06), 61–80. https://doi.org/10.3991/ijim.v16i06.27819

Suherman, S. N. A., Zafirah, A., Agusti, F. A., & Usman, R. (2020). The Effectiveness of AR-Geometry Interactive Book in Increasing Students’ Mathematical Reasoning Skill. Journal of Physics: Conference Series. 1554 012075. https://doi.org/10.1088/1742-6596/1554/1/012075

Suryanti, S., Arifani, Y., & Sutaji, D. (2020). Augmented Reality for Integer Learning: Investigating its potential on students' critical thinking. Journal of Physics: Conference Series. 1613 12041. https://doi.org/10.1088/1742-6596/1613/1/012041

Tang, Y. M., & Yu, K. M. (2017). Development and evaluation of a mobile platform for teaching mathematics of CAD subjects. Computer-Aided Design and Applications, 15(2), 164–169. https://doi.org/10.1080/16864360.2017.1375665

Tursynkulova, E., & Madiyarov, N. (2023). Applying dynamic geometry environment software as a visualization tool for teaching planimetry construction tasks. International Journal of Information and Education Technology, 13(12), 1950-1958. https://doi.org/10.18178/ijiet.2023.13.12.2009

Volioti, C., Orovas, C., Sapounidis, T., Trachanas, G., & Keramopoulos, E. (2023). Augmented reality in primary education: An active learning approach in mathematics. Computers, 12(10), 207. https://doi.org/10.3390/computers12100207

Watts, C. M., Moyer-Packenham, P. S., Tucker, S. I., Bullock, E. P., Shumway, J. F., Westenskow, A., Boyer-Thurgood, J., Anderson-Pence, K., Mahamane, S., & Jordan, K. (2016). An examination of children's learning progression shifts while using touch screen virtual manipulative mathematics apps. Computers in Human Behavior, 64, 814–828. https://doi.org/10.1016/j.chb.2016.07.029

Zabala-Vargas, S. A., García-Mora, L. H., Arciniegas-Hernandez, E., Reina-Medrano, J. I., de Benito-Crosetti, B., & Darder-Mésquida, A. (2021). Strengthening Motivation in the Mathematical Engineering Teaching Processes – A Proposal from Gamification and Game-Based Learning. International Journal of Emerging Technologies in Learning (iJET), 16(06), 4–19. https://doi.org/10.3991/ijet.v16i06.16163

Zuo, T., Jiang, J., Spek, E. V. der, Birk, M., & Hu, J. (2022). Situating learning in AR fantasy: Design considerations for AR game-based learning for children. Electronics, 11(15), 2331. https://doi.org/10.3390/electronics11152331

Descargas

Publicado

2025-12-09

Número

Sección

Investigación

Cómo citar

Souza, L. P., Jucá, S. C. S., & Alexandria, A. R. de. (2025). Perspectiva inmersiva para la enseñanza de matemáticas: una revisión sistemática de la literatura. Revista De Estudios Y Experiencias En Educación, 24(56), 37-60. https://doi.org/10.21703/rexe.v24i56.2932